Maths for week beginning 22nd February 2021
Please complete the daily work and send a copy/picture to your teacher.

5L Miss Langoo at elangoo@kingsavenue.lambeth.sch.uk

4/5 W Mrs Williams (formerly Duke) at jduke@kingsavenue.lambeth.sch.uk

> | Practise your |
| :--- |
| tables every |
| day on Times |
| Tables Rock |
| Stars |
| https://ttrock |
| stars.com/ | Contact your teacher if you need help logging into TTRS

Our February focus is the $7 x$

1x table	$2 x$ table	$3 \times$ table	$4 \times$ table	$5 \times$ table	$6 \times$ table
$\begin{array}{r} 1 \times 1=1 \\ 2 \times 1=2 \\ 3 \times 1=3 \\ 4 \times 1=4 \\ 5 \times 1=5 \\ 6 \times 1=6 \\ 7 \times 1=7 \\ 8 \times 1=8 \\ 9 \times 1=9 \\ 10 \times 1=10 \\ 11 \times 1=11 \\ 12 \times 1=12 \end{array}$	$\begin{array}{r} 1 \times 2=2 \\ 2 \times 2=4 \\ 3 \times 2=6 \\ 4 \times 2=8 \\ 5 \times 2=10 \\ 6 \times 2=12 \\ 7 \times 2=14 \\ 8 \times 2=16 \\ 9 \times 2=18 \\ 10 \times 2=20 \\ 11 \times 2=22 \\ 12 \times 2=24 \end{array}$	$\begin{array}{r} 1 \times 3=3 \\ 2 \times 3=6 \\ 3 \times 3=9 \\ 4 \times 3=12 \\ 5 \times 3=15 \\ 6 \times 3=18 \\ 7 \times 3=21 \\ 8 \times 3=24 \\ 9 \times 3=27 \\ 10 \times 3=30 \\ 11 \times 3=33 \\ 12 \times 3=36 \end{array}$	$\begin{array}{r} 1 \times 4=4 \\ 2 \times 4=8 \\ 3 \times 4=12 \\ 4 \times 4=16 \\ 5 \times 4=20 \\ 6 \times 4=24 \\ 7 \times 4=28 \\ 8 \times 4=32 \\ 9 \times 4=36 \\ 10 \times 4=40 \\ 11 \times 4=44 \\ 12 \times 4=48 \end{array}$	$\begin{gathered} 1 \times 5=5 \\ 2 \times 5=10 \\ 3 \times 5=15 \\ 4 \times 5=20 \\ 5 \times 5=25 \\ 6 \times 5=30 \\ 7 \times 5=35 \\ 8 \times 5=40 \\ 9 \times 5=45 \\ 10 \times 5=50 \\ 11 \times 5=55 \\ 12 \times 5=60 \end{gathered}$	$\begin{array}{r} 1 \times 6=6 \\ 2 \times 6=12 \\ 3 \times 6=18 \\ 4 \times 6=24 \\ 5 \times 6=30 \\ 6 \times 6=36 \\ 7 \times 6=42 \\ 8 \times 6=48 \\ 9 \times 6=54 \\ 10 \times 6=60 \\ 11 \times 6=66 \\ 12 \times 6=72 \end{array}$
$7 \times$ table	$8 \times$ table	$9 \times$ table	10x table	11x table	12x table
$\begin{array}{r} 1 \times 7=7 \\ 2 \times 7=14 \\ 3 \times 7=21 \\ 4 \times 7=28 \\ 5 \times 7=35 \\ 6 \times 7=42 \\ 7 \times 7=49 \\ 8 \times 7=56 \\ 9 \times 7=63 \\ 10 \times 7=70 \\ 11 \times 7=77 \\ 12 \times 7=84 \end{array}$	$\begin{array}{r} 1 \times 8=8 \\ 2 \times 8=16 \\ 3 \times 8=24 \\ 4 \times 8=32 \\ 5 \times 8=40 \\ 6 \times 8=48 \\ 7 \times 8=56 \\ 8 \times 8=64 \\ 9 \times 8=72 \\ 10 \times 8=80 \\ 11 \times 8=88 \\ 12 \times 8=96 \end{array}$	$\begin{gathered} 1 \times 9=9 \\ 2 \times 9=18 \\ 3 \times 9=27 \\ 4 \times 9=36 \\ 5 \times 9=45 \\ 6 \times 9=54 \\ 7 \times 9=63 \\ 8 \times 9=72 \\ 9 \times 9=81 \\ 10 \times 9=90 \\ 11 \times 9=99 \\ 12 \times 9=108 \end{gathered}$	$\begin{array}{r} 1 \times 10=10 \\ 2 \times 10=20 \\ 3 \times 10=30 \\ 4 \times 10=40 \\ 5 \times 10=50 \\ 6 \times 10=60 \\ 7 \times 10=70 \\ 8 \times 10=80 \\ 9 \times 10=90 \\ 10 \times 10=100 \\ 11 \times 10=110 \\ 12 \times 10=120 \end{array}$	$\begin{array}{r} 1 \times 11=11 \\ 2 \times 11=22 \\ 3 \times 11=33 \\ 4 \times 11=44 \\ 5 \times 11=55 \\ 6 \times 11=66 \\ 7 \times 11=77 \\ 8 \times 11=88 \\ 9 \times 11=99 \\ 10 \times 11=110 \\ 11 \times 11=121 \\ 12 \times 11=132 \end{array}$	$\begin{gathered} 1 \times 12=12 \\ 2 \times 12=24 \\ 3 \times 12=36 \\ 4 \times 12=48 \\ 5 \times 12=60 \\ 6 \times 12=72 \\ 7 \times 12=84 \\ 8 \times 12=96 \\ 9 \times 12=108 \\ 10 \times 12=120 \\ 11 \times 12=132 \\ 12 \times 12=144 \end{gathered}$

Monday $22^{\text {nd }}$ is DT day - no Maths or English today! Please see Foundation slides.

Lesson 1

Key vocabulary:

- Fraction

Tuesday 23rd February 2021
LO: To recap my knowledge of fractions

- Add
- Total
- Improper fraction
- Mixed number
- Equivalent
- Convert
- Numerator
- Denominator

Play Times Tables Rockstars every
day to practise your tables https://ttrockstars.com/

- Common denominator
- Simplify

Lesson 1 LO: To recap my knowledge of fractions

Arithmetic - equivalent fractions

$5 \longleftarrow$ denominator

Mixed number to improper fraction

A mixed number contains whole numbers and parts of a whole (fraction).

1. Look at the denominator of the fraction. This tells you how many parts make up a whole.

2. The numerator for the converted whole number equals the whole number multiplied by the denominator.

3. We can now add the
whole number in its fraction
form to the fraction already
in the mixed number.

$$
\begin{array}{|ll}
\text { Numerator } \longrightarrow & \frac{17}{6} \\
\text { Denominator } \longrightarrow
\end{array}
$$

$7 \frac{1}{2}$ as an improper fraction?

1. Circle any mixed number that is equivalent to the improper fraction.

$\frac{13}{3}$	$2 \frac{2}{3}$	$4 \frac{1}{3}$	$5 \frac{1}{3}$	$4 \frac{2}{3}$

Improper fraction to mixed number?

$5 \longleftarrow$ denominator

2. Write the following improper fractions as mixed numbers.
a) $\frac{22}{3}=$ \qquad b) $\frac{14}{5}=$ \qquad c) $\frac{23}{10}=$ \qquad d) $\frac{34}{10}=$ \qquad e) $\frac{21}{5}=$
\qquad
f) $\frac{5}{2}=$ \qquad g) $\frac{16}{3}=$ \qquad h) $\frac{19}{4}=$ \qquad i) $\frac{31}{4}=$ \qquad j) $\frac{30}{6}=$ \qquad --
$5 \longleftarrow$ denominator

Improper fractions and mixed numbers

3. Twenty-seven children sit at tables of 6 , filling the tables where possible. Express how many tables are filled using a mixed number.
4. A teacher asks 2 children to sort 73 tennis balls into baskets of 10 balls, filling the baskets where possible. Express how many baskets are filled using a mixed number.
5. A pizza truck sells pizza slices. Each slice is one quarter of a pizza. At the end of the day, the pizza seller works out how many pizzas he has left. On the day he has 9 slices. How many pizzas does he have left?

Lesson 1 LO: To recap my knowledge of fractions

Compare and order fractions

$5 \longleftarrow$ denominator

Compare and order fractions

$5 \longleftarrow$ denominator

$$
\frac{5}{6}
$$

Smallest

Largest
$5 \longleftarrow$ denominator

Add fractions

$$
\frac{2}{3}+\frac{1}{6}=\square
$$

$$
\begin{array}{ll}
\frac{1}{2}+\frac{1}{4}=\square & \frac{1}{5}+\frac{7}{10}=\square \\
\frac{1}{4}+\frac{3}{8}=\square & \frac{5}{7}+\frac{3}{14}=\square \\
\frac{1}{3}+\frac{1}{6}=\square \\
\frac{1}{14}+\frac{6}{7}=\square
\end{array}
$$

Lesson 1 LO: To recap my knowledge of fractions

Circle any mixed number that is equivalent to the improper fraction.

$\frac{13}{3}$	$2 \frac{2}{3}$	$\left(4 \frac{1}{3}\right)$	$5 \frac{1}{3}$	$4 \frac{2}{3}$

| Question | Answer |
| :--- | :--- | f) $\frac{5}{2}=2 \frac{1}{2}$

k) $\frac{21}{6}=3 \frac{1}{2}$ l) $\frac{17}{8}=2 \frac{1}{8}$
m) $\frac{19}{7}=2 \frac{5}{7} \quad$ n) $\frac{22}{9}=2 \frac{4}{9}$
n) $\frac{22}{9}=2 \frac{4}{9}$
o) $\frac{27}{12}=2 \frac{3}{12}$
3. Twenty-seven children sit at tables of 6, filling the tables where possible. Express how many tables are filled using a mixed number.

$$
4 \frac{3}{6} \text { or } 4 \frac{1}{2}
$$

4. A teacher asks 2 children to sort 73 tennis balls into baskets of 10 balls, filling the baskets where possible. Express how many baskets are filled using a mixed number. \qquad
5. A pizza truck sells pizza slices. Each slice is one quarter of a pizza. At the end of the day, the pizza seller works out how many pizzas he has left. On the day he has 9 slices. How many pizzas does he have left?
\qquad

Lesson 1 LO: To recap my knowledge of fractions

$$
\frac{1}{2}+\frac{1}{4}=\frac{3}{4}
$$

ANSWERS

$$
\frac{1}{5}+\frac{7}{10}=\frac{9}{10}
$$

$$
\frac{1}{4}+\frac{3}{8}=\frac{5}{8}
$$

$$
\frac{1}{3}+\frac{1}{6}=\frac{1}{2}
$$

Lesson 2

Key vocabulary:

Wednesday 24th February 2021

LO: To add mixed numbers

Watch voice over:
https://youtu.be/JqFdG4Fjxc0

Play Times Tables Rockstars every day to practise your tables https://ttrockstars.com/

- Fraction
- Add
- Total
- Improper fraction
- Mixed number
- Equivalent
- Convert
- Numerator
- Denominator
- Common denominator
- Simplify

Arithmetic - Flashback Four

D) Add together $\frac{2}{3}$ and $\frac{1}{6}$
2) Which is greater, $\frac{11}{5}$ or $\frac{11}{10}$?
3) Complete $\frac{7}{10}=\frac{\square}{40}$
4) Work out $5 \times 6 \times 2$

Lesson 2
 LO: To add mixed numbers

Strategy:

1. Add the whole numbers
2. Add the fractions
3. Simplify the fraction
4. Add the simplified fraction to the whole number
E.g: $7 \frac{1}{5}+6 \frac{3}{10}=$?
5. Add the whole numbers $->7+6=13$
6. Add the fractions $->\frac{1}{5}+\frac{3}{10}=\frac{5}{10}$ see explanation ->

Step 2: Add the fractions (explained)

Make the fractions have the same denominator $\frac{1}{5}=\frac{?}{10}$

To turn 5 into 10, we x by 2, so we also must x the top by $2 \quad \frac{1}{5}=\frac{2}{10}$

Now we can add the fractions $\frac{2}{10}+\frac{3}{10}=\frac{5}{10}$
3. Simplify the fraction $\rightarrow \frac{5}{10}$ (both parts divide by 5$)=\frac{1}{2}$
4. Add the simplified fraction to the whole number $\rightarrow 13+\frac{1}{2}=13 \frac{1}{2}$
$7 \frac{1}{5}+6 \frac{3}{10}=13 \frac{1}{2}!$

Lesson 2 LO: To add mixed numbers

My turn:
$1 \frac{3}{4}+6 \frac{3}{20}=$?

1. Add the whole numbers $->1+6=7$
2. Add the fractions \rightarrow Make the fractions have the same denominator $\quad \frac{3}{4}=\frac{?}{20}$ To turn 4 into 20 , we \times by 5 , so we also must x the numerator by $5 \quad \frac{3}{4}=\frac{15}{20}$ Now we can add the fractions:
$\frac{15}{20}+\frac{3}{20}=\frac{18}{20}$
3. Simplify the fraction $\rightarrow \frac{18}{20}$ (both numerator and denominator divide by 2) $=\frac{9}{10}$
4. Add the simplified fraction to the whole number $->7+\frac{9}{10}=7 \frac{9}{10}$
$1 \frac{3}{4}+6 \frac{3}{20}=7 \frac{9}{10}$

Your turn:

$3 \frac{1}{6}+5 \frac{4}{12}=?$

1. Add the whole numbers -> $3+5=$?
2. Add the fractions $\rightarrow \frac{1}{6}=\frac{?}{12} \quad \frac{?}{12}+\frac{4}{12}=\frac{?}{?}$
3. Simplify the fraction $\rightarrow \stackrel{?}{?}\left(\right.$ both divide by ?) $=\frac{?}{?}$
4. Add the simplified fraction to the whole number \rightarrow ? $+\frac{?}{?}=$?

Your turn - let's go through it
$3 \frac{1}{6}+5 \frac{4}{12}=?$
If you're not sure at this point, go back through the strategy, and my

1. Add the whole numbers -> $3+5=8$
2. Add the fractions $\rightarrow \frac{1}{6}=\frac{2}{12} \quad \frac{2}{12}+\frac{4}{12}=\frac{6}{12}$ turn, and watch the White Rose Video on the strategy slide
3. Simplify the fraction $->\frac{6}{12}($ both divide by 6$)=\frac{1}{2}$
4. Add the simplified fraction to the whole number $\rightarrow 8+\frac{1}{2}=8 \frac{1}{2}$

Well done if you got that! If you didn't, go back and go through the steps again.

Task 1 - Fluency

Complete the calculations.
a) $1 \frac{2}{5}+2 \frac{3}{10}=\square$
d) $1 \frac{3}{16}+4 \frac{3}{4}=\square$
b) $2 \frac{2}{5}+2 \frac{3}{10}=\square$
e) $4 \frac{1}{4}+2 \frac{11}{16}=\square$
f) $1 \frac{4}{15}+3 \frac{2}{3}=\square$

Strategy:

1. Add the whole numbers
2. Add the fractions
3. Simplify the fraction
4. Add the simplified fraction to the whole number

Lesson 2 LO: To add mixed numbers

Task 2 - Reasoning
a)

How can Ron improve his answer?

Strategy:

1. Add the whole numbers
2. Add the fractions
3. Simplify the fraction
4. Add the simplified fraction to the whole number
b) A blue ribbon is $2 \frac{4}{9}$ metres long.

A yellow ribbon is $3 \frac{2}{3}$ metres long.

a) What is the total length of the blue and yellow ribbon?
b) A red ribbon is $1 \frac{5}{18}$ metres longer than the yellow ribbon. How long is the red ribbon?

Lesson 2 LO: To add mixed numbers
Task 3 - Problem Solving

Here are some number cards.

Strategy:

1. Add the whole numbers 2. Add the fractions
2. Simplify the fraction
3. Add the simplified fraction to the whole number
a) What is the greatest total you can make with two cards?
b) What is the smallest total you can make with two cards?

Flashback Four

I) Add together $\frac{2}{3}$ and $\frac{1}{6} \quad \frac{5}{6}$
2) Which is greater, $\frac{11}{5}$ or $\frac{11}{10}$?
3) Complete $\frac{7}{10}=\frac{\square}{40}$

28
4) Work out $5 \times 6 \times 2$

60

Task 1 - ANSWERS

Complete the calculations.
a) $1 \frac{2}{5}+2 \frac{3}{10}=3 \frac{7}{10}$
b) $2 \frac{2}{5}+2 \frac{3}{10}=4 \frac{7}{10}$
c) $1 \frac{3}{4}+3 \frac{3}{20}=4 \frac{9}{10}$
e) $4 \frac{1}{4}+2 \frac{11}{16}=6 \frac{15}{16}$

Lesson 2
 LO: To add mixed numbers

Task 2 - ANSWERS

a)

How can Ron improve his answer?
\qquad

Task 3 - ANSWERS

a) What is the greatest total you can make with two cards?

b) What is the smallest total you can make with two cards?

A blue ribbon is $2 \frac{4}{9}$ metres long.
b)

A yellow ribbon is $3 \frac{2}{3}$ metres long.
a) What is the total length of the blue and yellow ribbon?

b) A red ribbon is $1 \frac{5}{18}$ metres longer than the yellow ribbon.

How long is the red ribbon?

Once you have finished your work, self-marked and corrected any mistakes, please send your work to your teacher:

5L Miss Langoo at elangoo@kingsavenue.lambeth.sch.uk
4/5 W Mrs Williams at jduke@kingsavenue.lambeth.sch.uk

Lesson 3

Key vocabulary:

Thursday 25 th February 2021
LO: To subtract fractions

Watch voice over: https://youtu.be/vzUoDV6Lqh0

Play Times Tables Rockstars every day to practise your tables https://ttrockstars.com/

- Fraction
- Subtract
- Total
- Improper fraction
- Mixed number
- Equivalent
- Convert
- Numerator
- Denominator
- Common denominator
- Simplify

Arithmetic - Flashback Four
I) Work out $\frac{7}{12}+\frac{1}{6}$
2) Which is smaller, $2 \frac{3}{4}$ or $2 \frac{5}{8}$?

3) How many twelfths is the same as $\frac{2}{3}$?
4) Write the Roman numeral CXL as an ordinary number

Exactly like adding fractions, but subtracting!

Strategy:

1. Find a common denominator
2. Change the fractions to have the same denominator
3. Subtract the numerators
4. Simplify if needed
E.g: $\frac{1}{2}-\frac{3}{8}=$?
5. Find a common denominator \rightarrow both over 8
6. Convert the fractions $\rightarrow \frac{1}{2}=\frac{?}{8} \quad \frac{1}{2}=\frac{x 4}{=} \frac{4}{8}$
7. Subtract the numerators $\rightarrow \frac{4}{8}-\frac{3}{8}=\frac{\mathbf{1}}{8}$

8. Simplify if needed -> not needed!

Lesson 3 LO: To subtract fractions

My turn:

E.g: $\frac{5}{6}-\frac{1}{2}=$?

Strategy:

1. Find a common denominator
2. Change the fractions to have the same denominator
3. Subtract the numerators
4. Simplify if needed
5. Find a common denominator \rightarrow both over 6
6. Convert the fractions $-\frac{1}{2}=\frac{?}{6} \quad \frac{1}{2} \stackrel{\times 3}{=} \frac{3}{6}$ (multiply numerator and denominator by 3)
7. Subtract the numerators $\rightarrow \frac{5}{6}-\frac{3}{6}=\frac{2}{6}$
8. Simplify if needed \rightarrow both numerator and denominator divisible by 2
$\frac{2}{6}=\frac{1}{3}$

Your turn:

E.g: $\frac{5}{6}-\frac{1}{3}=?$

Strategy:

1. Find a common denominator
2. Change the fractions to have the same denominator
3. Subtract the numerators
4. Simplify if needed
5. Find a common denominator \rightarrow both over?
6. Convert the fractions -> $\frac{1}{3} \stackrel{x ?}{=} \frac{?}{?}$ (multiply numerator and denominator by ?)
7. Subtract the numerators $\rightarrow \frac{5}{6}-\frac{?}{?}=\frac{?}{?}$
8. Simplify if needed \rightarrow both numerator and denominator divisible by?

Lesson 3 LO: To subtract fractions
Your turn, let's go through it
E.g: $\frac{5}{6}-\frac{1}{3}=?$

Strategy:

1. Find a common denominator
2. Change the fractions to have the same denominator
3. Subtract the numerators
4. Simplify if needed
5. Find a common denominator \rightarrow both over 6
6. Convert the fractions -> $\frac{1}{3} \stackrel{x 2}{=} \frac{2}{6}$ (multiply numerator and denominator by 2) X2
7. Subtract the numerators $\rightarrow \frac{5}{6}-\frac{2}{6}=\frac{3}{6}$
8. Simplify if needed \rightarrow both numerator and denominator divisible by 3
$\frac{3}{6}=\frac{1}{2}$
If you're not sure at this point, go back through the strategy, and my turn, and watch the White Rose Video on the strategy slide

Strategy:

1. Find a common denominator
2. Change the fractions to have the same denominator
3. Subtract the numerators
4. Simplify if needed

Task 1: Fluency

a)

Match the equivalent calculations.
$\frac{3}{4}-\frac{3}{20}$
$\frac{10}{20}-\frac{3}{20}$
$\frac{4}{5}-\frac{3}{20}$

$$
\frac{16}{20}-\frac{3}{20}
$$

b) Jack walks $\frac{7}{9} \mathrm{~km}$ to school.

Aisha walks $\frac{2}{3} \mathrm{~km}$ to school.
How much further does Jack walk than Aisha?

Task 2: Reasoning

a)

Complete the subtractions.
a) $\frac{7}{8}-\frac{1}{16}=\square$
b) $\frac{6}{7}-\frac{2}{21}=\square$

$$
\frac{5}{8}-\frac{1}{16}=\square
$$

$$
\frac{5}{7}-\frac{4}{21}=\square
$$

$$
\frac{3}{8}-\frac{1}{16}=\square
$$

$$
\frac{1}{8}-\frac{1}{16}=\square
$$

What do you notice?

Strategy:

1. Find a common denominator
2. Change the fractions to have the same denominator 3. Subtract the numerators 4. Simplify if needed
b)

The perimeter of the rectangle is $\frac{14}{15} \mathrm{~m}$.
Work out the missing length.

Remember, perimeter is length of all 4 sides added together. 2 long sides are equal, 2 short sides are equal.

Task 3: Problem Solving

Here are some fraction cards.

$$
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline \frac{3}{3} & \frac{1}{2} \\
\hline
\end{array}
$$

a) Which two fractions have a difference of $\frac{1}{4}$?
b) Which two fractions have a difference of $\frac{1}{2}$?
c) Which two fractions have a difference of $\frac{1}{12}$?

Give two possible pairs.

Strategy:

1. Find a common denominator
2. Change the fractions to have the same denominator
3. Subtract the numerators
4. Simplify if needed

Lesson 3 LO: To subtract fractions

ANSWERS

Flashback Four

1) Work out $\frac{7}{12}+\frac{1}{6} \quad \frac{9}{12}$ or $\frac{3}{4}$
2) Which is smaller, $2 \frac{3}{4}$ or $2 \frac{5}{8}$? $2 \frac{5}{8}$

3) How many twelfths is the same as $\frac{2}{3}$? 8
4) Write the Roman numeral CXL as an ordinary 140 number

Task 1 Answers

Match the equivalent calculations.

Lesson 3 LO: To subtract fractions

ANSWERS

Task 2
a) $\frac{7}{8}-\frac{1}{16}=\frac{13}{16}$
b) $\frac{6}{7}-\frac{2}{21}=\frac{16}{21}$
$\frac{5}{8}-\frac{1}{16}=\frac{9}{16}$
$\frac{5}{7}-\frac{4}{21}=\frac{11}{21}$
$\frac{3}{8}-\frac{1}{16}=\frac{5}{16}$
$\frac{4}{7}-\frac{6}{21}=\frac{6}{21}$
$\frac{1}{8}-\frac{1}{16}=\frac{1}{16}$

$$
\frac{3}{7}-\frac{8}{21}=\frac{1}{21}
$$

The perimeter of the rectangle is $\frac{14}{15} \mathrm{~m}$. Work out the missing length.

Task 3 Answers

a) Which two fractions have a difference of $\frac{1}{4}$?

b) Which two fractions have a difference of $\frac{1}{2}$?

c) Which two fractions have a difference of $\frac{1}{12}$? Give two possible pairs.

Once you have finished your work, self-marked and corrected any mistakes, please send your work to your teacher:

5L Miss Langoo at elangoo@kingsavenue.lambeth.sch.uk

Lesson 4

Friday 26 ${ }^{\text {th }}$ February 2021

LO: To subtract mixed numbers

Watch voice over:
 https://youtu.be/fT Hh5G1wu4

Play Times Tables Rockstars
every day to practise your tables
https://ttrockstars.com/

Key vocabulary:

- Fraction
- Subtract
- Total
- Improper fraction
- Mixed number
- Whole
- Equivalent
- Convert
- Numerator
- Denominator
- Common denominator
- Simplify

Arithmetic - Flashback Four

1) Work out $\frac{1}{5}+\frac{1}{10}+\frac{1}{20}$
2) Work out $\frac{7}{9}-\frac{2}{9}$
3) Write $\frac{18}{5}$ as a mixed number.
4) What is $634 \div 1$?

Subtracting mixed numbers: simple equations
Some mixed number subtractions are no different to subtracting fractions.

Strategy:

1. Ignore the whole number
2. Subtract the fractions (make the denominator the same)
3. Simplify the fraction
4. Add the simplified fraction to the whole number
E.g: $7 \frac{3}{5}-\frac{1}{10}=$?
5. Ignore the whole number (7)

If you are unsure on Step 2, go back through Lesson 2 slides.
2. Subtract the fractions $\rightarrow \frac{3}{5}=\frac{6}{10} \quad \frac{6}{10}-\frac{1}{10}=\frac{5}{10}$
3. Simplify the fraction $\rightarrow \frac{5}{10}$ (both parts divide by 5$)=\frac{1}{2}$
4. Add the simplified fraction to the whole number $\rightarrow 7+\frac{1}{2}=7 \frac{1}{2}$

Task 1: Fluency
1)

Complete the subtractions.
a) $3 \frac{1}{4}-\frac{5}{24}=\square$
d) $7 \frac{5}{6}-\frac{13}{24}=\square$
b) $3 \frac{3}{16}-\frac{1}{8}=\square$
c) $2 \frac{5}{6}-\frac{2}{3}=$ \square
e) $4 \frac{4}{9}-\frac{4}{27}=\square$
f) $6 \frac{11}{12}-\frac{3}{4}=\square$

Strategy:

1. Ignore the whole number
2. Subtract the fractions
3. Simplify the fraction
4. Add the simplified fraction to the whole number
2) A jug contains $1 \frac{3}{5}$ litres of orange juice. Eva pours $\frac{4}{15}$ litres into a glass.

How much orange juice is left in the jug?

Lesson 4 LO: To subtract mixed numbers

Task 2: Reasoning and Problem Solving

1)

Three children take part in throwing competitions.
Here is the table of results.

	Javelin	Shot Put	Discus
Dexter	$15 \frac{1}{4} \mathrm{~m}$	$7 \frac{5}{12} \mathrm{~m}$	
Amir	$13 \frac{3}{8} \mathrm{~m}$		$12 \frac{7}{8} \mathrm{~m}$
Annie		9 m	$11 \frac{5}{12} \mathrm{~m}$

Use the clues to complete the table.

- Annie's javelin throw is $\frac{11}{12} \mathrm{~m}$ less than Dexter's.
- Amir's shot put throw is $\frac{3}{4} \mathrm{~m}$ less than Annie's.
- Dexter's discus throw is $\frac{1}{2} \mathrm{~m}$ less than Amir's.

Strategy:

1. Ignore the whole number
2. Subtract the fractions
3. Simplify the fraction
4. Add the simplified fraction to the whole number
2) Find three different ways to complete the calculation.
$3 \frac{\square}{5}-\frac{\square}{20}=3 \frac{1}{20}$
Are there any other ways to complete this calculation?

Task 2: Reasoning and Problem Solving

I have two whole pizzas and three quarters of
3) another pizza. I eat five eighths of one of the pizzas. How much pizza is left?

Isla has drawn a picture to represent this word problem and find the answer.

a) Has she drawn her picture correctly? \qquad
b) What is the answer that Isla found? \qquad

Lesson 4 LO: To subtract mixed numbers

ANSWERS

Task 1 Answers

Flashback Four
Complete the subtractions.
a) $3 \frac{1}{4}-\frac{5}{24}=3 \frac{1}{24}$
d) $7 \frac{5}{6}-\frac{13}{24}=7 \frac{7}{24}$

1) Work out $\frac{1}{5}+\frac{1}{10}+\frac{1}{20} \quad \frac{7}{20}$
2) Work out $\frac{7}{9}-\frac{2}{9} \quad \frac{5}{9}$
b) $3 \frac{3}{16}-\frac{1}{8}=3 \frac{1}{16}$
e) $4 \frac{4}{9}-\frac{4}{27}=4 \frac{8}{27}$
3) Write $\frac{18}{5}$ as a mixed number. $3 \frac{3}{5}$
4) What is $634 \div 1$? 634
c) $2 \frac{5}{6}-\frac{2}{3}=2 \frac{1}{6}$
f) $6 \frac{11}{12}-\frac{3}{4}=6 \frac{1}{6}$

Lesson 4 LO: To subtract mixed numbers

ANSWERS
Task 2
Here is the table of results.

	Javelin	Shot Put	Discus
Dexter	$15 \frac{1}{4} \mathrm{~m}$	$7 \frac{5}{12} \mathrm{~m}$	$12 \frac{3}{8} \mathrm{~m}$
Amir	$13 \frac{3}{8} \mathrm{~m}$	$8 \frac{1}{4} \mathrm{~m}$	$12 \frac{7}{8} \mathrm{~m}$
Annie	$14 \frac{1}{3} \mathrm{~m}$	9 m	$11 \frac{5}{12} \mathrm{~m}$

Find three different ways to complete the calculation.

$$
\begin{aligned}
& \text { e.g. } \\
& 3 \frac{\square}{5}-\frac{\square}{20}=3 \frac{1}{20} \\
& 3 \frac{2}{5}-\frac{\frac{\square}{20}}{20}=3 \frac{1}{20}
\end{aligned}
$$

$$
3 \frac{3}{5}-\frac{11}{20}=3 \frac{1}{20}
$$

a) Yes, Isla's picture is correct.
b) $2 \frac{1}{8}$ is left.

Katie is wrong. $\frac{5}{6}$ is equivalent to $\frac{10}{12}$ so $1 \frac{5}{6}-\frac{10}{12}=1$. There is no leftover fraction.
Once you have finished your work, self-marked and corrected any mistakes, please send your work to your teacher:

5L Miss Langoo at elangoo@kingsavenue.lambeth.sch.uk
4/5 W Mrs Williams at jduke@kingsavenue.lambeth.sch.uk

